利用动态规划解决袋鼠过河问题

最近开始刷牛客上的题目,由于本科学的算法基本都忘了,因此写几个帖子记录下自己刷题学到的东西,正好复习一下算法了。

我们都知道,动态规划算法是算法设计中非常重要的一种方法,是一个多阶段决策的过程。在使用动态规划算法之前需要先判断问题是否满足优化原则,如果不满足优化原则是不能使用动态规划算法的。举个最简单的例子,已知S是起点,T是终点,在S和T之间有三个中间节点,每个节点间的路径都有两条,代价为2或者5。问题是求解从起点S到终点T之间总长模10的最小路径。显然,利用动态规划求解该问题得到的不是最小路径。这是因为该问题不满足优化原则导致的。

确定问题可以使用动态规划之后,接下来就是对问题抽象、建模,然后解决问题。主要分为以下几步:

1、抽象问题,确定目标函数和约束条件。

2、寻找划分子问题的边界,对问题进行划分。

3、寻找递推方程。

通过对动态规划算法进行简单的回顾,可以尝试去求解袋鼠过河问题。问题描述如下:

一只袋鼠要从河这边跳到河对岸,河很宽,但是河中间打了很多桩子,每隔一米就有一个,每个桩子上都有一个弹簧,袋鼠跳到弹簧上就可以跳的更远。每个弹簧力量不同,用一个数字代表它的力量,如果弹簧力量为5,就代表袋鼠下一跳最多能够跳5米,如果为0,就会陷进去无法继续跳跃。河流一共N米宽,袋鼠初始位置就在第一个弹簧上面,要跳到最后一个弹簧之后就算过河了,给定每个弹簧的力量,求袋鼠最少需要多少跳能够到达对岸。如果无法到达输出-1
示例输入:
5
2 0 1 1 1
示例输出:
4

对问题进行抽象之后,得到递推方程如下(其中dp数组存储了袋鼠跳跃的最小步数,初值为0):

dp[i+j]=min(dp[i+j],dp[i]+1);


c++源代码如下:

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

int main() {
	int n;
	cin >> n;
	vector<int> vec(n,0);
	vector<int> dp(n,10000);
	int hops = -1;
	dp[0] = 0;
	for (int i = 0; i < n; i++)
		cin >> vec[i];

	// rank every possible choice and choose the best one
	for (int i = 0; i < n; i++){
		for (int j = 1; j <= vec[i]; j++) {
			// can not go through the river 
			if (i + j < n) 
				dp[i + j] = min(dp[i + j], dp[i] + 1);
			// go through the river successfully
			else{
				if (hops == -1)
					hops = dp[i] == 10000 ? -1 : dp[i]+1;
				else
					hops = min(hops, dp[i]+1);
			}
		}
	}
	cout << hops << endl;

	return 0;
}
这样就运用了动态规划算法求解了袋鼠过河的问题,接下来刷题的过程中会随时继续记录自己的想法和学到的知识。



  • 5
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
袋鼠问题是一个经典的动态规划问题,可以使用C语言来求解。假设有n个石头,编号为1~n,袋鼠要从石头1跳到石头n,每个石头上都有一个数字表示跳到该石头需要的体力值,袋鼠的体力值为m,每次跳跃可以跳1~k个石头,求袋鼠能否跳到石头n。 以下是使用C语言实现袋鼠问题的代码: ```c #include <stdio.h> #include <stdbool.h> bool canCross(int stones[], int n, int m, int k) { // 初始化动态规划数组 bool dp[n][m+1]; for(int i = 0; i < n; i++) { for(int j = 0; j <= m; j++) { dp[i][j] = false; } } dp[0][0] = true; // 动态规划 for(int i = 1; i < n; i++) { for(int j = 1; j <= m; j++) { for(int l = 1; l <= k && l <= i; l++) { if(stones[i] - stones[i-l] <= j) { dp[i][j] = dp[i][j] || dp[i-l][j-(stones[i]-stones[i-l])]; } } } } // 返回结果 for(int i = 0; i <= m; i++) { if(dp[n-1][i]) { return true; } } return false; } int main() { int stones[] = {0, 1, 3, 5, 6, 8, 12, 17}; int n = sizeof(stones) / sizeof(stones[0]); int m = 4; int k = 3; bool result = canCross(stones, n, m, k); printf("%s\n", result ? "能够跳到石头n" : "无法跳到石头n"); return 0; } ``` 在这个例子中,我们使用一个二维数组`dp`来记录动态规划状态,其中`dp[i][j]`表示袋鼠在第i个石头上,体力值为j时是否能够到达石头n。我们先将`dp[0][0]`初始化为true,表示袋鼠在第1个石头上时,体力值为0,可以到达石头n。 接下来,我们利用三重循环遍历所有可能的情况。第一重循环枚举所有的石头,第二重循环枚举所有可能的体力值,第三重循环枚举可以跳跃的石头个数。如果从第i个石头跳到第i-l个石头需要的体力值不超过j,那么我们就可以通过状态转移方程`dp[i][j] = dp[i][j] || dp[i-l][j-(stones[i]-stones[i-l])]`来更新`dp[i][j]`的值。最后,如果`dp[n-1][i]`中有任何一个值为true,那么就表示袋鼠可以跳到石头n。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值